加工中心地脚低速滑动界面法向刚度分形模型及试验


伯特利数控 加工中心  钻攻中心  

 前言:

界面的通常意义是指由2种材料形成的边界层,一般的界面力学考虑的界面是固体和固体形成的边界层[1],界面主要描述2个固体接触之后的力学行为。表面是指2个固体接触时的公共轮廓,主要描述2个固体接触之前的力学参数,如表面的弹性模量与泊松比等。早在1915年,著名化学家WOLFGANG就提出界面科学研究的必要性,他认为界面是“被忽略尺度的世界”。也就是说界面研究所涉及的空间尺度超过了当今科学研究的尺度范围,即微观尺度的原子、分子或者宏观尺度的体相物质。界面科学是机械学领域中具有较大学科深度与难度的课题,也是现代机械工程学科的研究前沿和重大科学问题之一,具有科学研究的意义和工程实用价值。由于长期以来人们忽视了该领域的研究,使得界面科学的发展迄今还不十分完善。实践中人们认识到,机械零部件的表面品质和界面行为是影响机械零件性能,诸如接触疲劳强度、摩擦功耗、磨损寿命和抗腐蚀能力等至关重要的因素。又如,机械装备的动态性能以及振动和噪声也在很大程度上取决于各个接触界面的刚度和界面阻尼特性[2]。从是否滑动来看,界面可分为二类,即固定界面和滑动界面。滑动界面是指相互连接的2个零部件之间在工作状态时存在宏观相对滑动的界面。本文讨论2个零部件之间的接触,故滑动接触界面简称滑动界面。长期以来国内外科技工作者对此进行了许多研究工作。

(1)   固定界面的国内外研究现状分析。张学良等基于粗糙表面接触分形理论,首次提出了界面法向接触刚度分形模型[3]和切向接触刚度分形模型[4],通过数字仿真研究发现分形维数的增大及特征长度的减小都会引起法向接触刚度、切向接触刚度的增大。在把分形理论如何适当运用于机械装备方面张学良是领导者。田红亮等>7]将赫兹接触与分形理论有机地联系起来,提出了改进的法向接触刚度分形模型,此外还结合分形接触与有限元思想,提出虚拟材料法建立了加工中心固定界面的模型。MAO[8]考虑界面自由度耦合,联合动力学参数与实测频率响应函数,辨识了栓接界面动态特征参数。Hertz接触模型是在以下3个假设条件下得到的:①两接触表面非同曲;②接近接触区时,每个固体都视为半空间弹性体;③表面无摩擦。材料在加工和使用过程中,总要受到外力作用。材料受外力作用时所表现的性能称为力学性能,如强度、塑性、硬度、韧性及疲劳强度等。材料在外力作用下将发生形状和尺寸变化,称为变形。外力去除后能够恢复的变形称为弹性变形,不能够恢复的变形称为塑性变形。微凸体变形包括弹性变形与塑性变形,因此根据Hertz接触模型的第2个假设Hertz接触模型没有考虑塑性变形,但Hertz接触模型的基本弹性方程依然适用于实际工程。根据Hertz接触模型的第3个假设,Hertz接触模型没有考虑摩擦。上述文献存在一个共性瑕疵:皆以赫兹弹性理论为基础,由于大多数的物体的表面是加工制造而成,由于加工方法的不同,物体表面或多或少都会产生表面公差、

波纹度和粗糙度,因此2个物体接触后所形成的界面不可能是绝对光滑的,赫兹弹性理论局限于无摩擦界面。摩擦接触问题的研究一直是科研人员与工程师们感兴趣的研究领域,且人们主要使用了数值计算方法中的有限元法和边界元法进行研究。然而由于有摩擦界面问题的复杂性,使得此问题至今仍未得到很好的解决。

(2)   滑动界面的国内外研究现状分析。CHLEBUS[9]用界面特性参数数据库及一组变横截面杆单元模拟界面的法向和切向特征,利用商业有限元软件实现自动建模,并对加工中心导轨界面进行有限元建模与特性分析计算,计算结果与试验误差在15%以内。MI[1°]在对加工中心导轨部件进行模态试验的基础上,提出了一种将模态试验数据与有限元分析模型相集成的导轨结合部动力学参数的优化识别方法。WU[11~]对滚动导轨的建模采用有限元法,将导轨同滑块之间的连接等效为若干弹簧-阻尼单元。OHTA[13_15]在考虑导轨同滑块连接的具体结构形式,每一个滚珠都用一个线性弹簧单元来模拟,其在建模方式上与宏观建模方式相比有了一定程度的进步,其建模方式相当于将滚珠同滑块之间的连接视为点-点接触,而实际滚珠同凹槽之间是一种面-面接触。毛宽民等[16]根据试验测得滚动直线导轨副滑动界面的柔度系数,推导出界面单元刚度矩阵。另外毛宽民等[17]考虑滚珠直线导轨的波纹度,当角位移民,?和艮值很小时,假设cos& «見,cos0v « 6^ , cos0__ « (正确表达式应为 cos0x «1,COS' COS& »1)推导滚珠与滑块接触点处曲率中心位置向量的变换矩阵,进而获得其位移与频谱。只有以面-面接触的建模方法来描述滚珠同沟槽的接触行为,才能更加精准地创建直线滚动导轨的力学模型。但是由于计算的复杂性,目前完全考虑滚珠面-面接触形式来模拟导轨的动、静力学特性的研究并不多见。目前滑动界面基础试验数据有限,没文本框: (2)文本框: (3)文本框: 7C有形成一个团体性的数据库,只存在于部分研究机构,并且其适用范围还有待于进一步验证,工程上还没一个标准滑动试验样件,用于第三方来检验基础数据的有效性。同时如何将滑动界面的非线性动力学预测模型耦合到结构件的有限元模型中,预测、评价和验证工程实际中整体结构的动力学特性,是目前面临的重要难题。

伯特利数控 备注:为保证文章的完整度,本文核心内容都PDF格式显示,如未有显示请刷新或转换浏览器尝试,手机浏览可能无法正常使用!


结束语:

 

         (1) 微凸体临界平均压强随着动摩擦因数的增加而变小。分形区域扩展因数随着分形维数的增加而减小。微凸体最大结合面积随着分形维数的增加而线性减小。

 

(2) 法向接触刚度随着动摩擦因数、面积比、特征长度的增加而哀减。法向接触刚度随着分形维数、接触面积的比率、法向接触载荷、微凸体最大结合面积的增加而增加。

(3) 从有限元模拟的对比能够看出,计及界面参数的模型得到的动柔度、法向接触刚度数据与试验数据十分靠近,分别间接与直接地证明本文低速滑动界面法向参数辨识的精度。

(4) 区别无阻尼自然频率与无阻尼自然角频率。在第4节中以无阻尼自然角频率(〇为自变量,推导界面的功率谱密度函数,所得一系列中间结果、最终结果与现有文献不同。在有阻尼状态下进行试验,在接触问题中通常认为阻尼最重要。已知阻尼比c可获得有阻尼自然角频率®d=75"^®。本文求解的是以《为自变量的功率谱密度函数,给出了识别界面分形维数、特征长度的理论与试验办法。

以《为自变量的结构函数的修正计算是后续重点研发的内容。

 

 

伯特利数控是一家集销售、应用及服务于一体的公司。产品包括:CNC加工中心钻攻中心龙门加工中心雕铣机石墨机五轴加工中心立式加工中心卧式加工中心等。我们机床的生产工厂设在广东省东莞市,目前其生产的加工中心70%出口,其中出口到欧洲占到50%。我们尽心、尽力、尽意的服务!

 声明:本站文章均来自网络,所有内容不代表本站观点,本站不承担任何法律责任!

标签: 加工中心  
分类: 加工中心  
上一篇加工中心的动态性能及其优化(下)
下一篇加工中心工具行业景气度大幅提升2017年有望触底

加工中心  相关内容

——

16

2018-10

超重型数控龙门移动加工中心设计

0 引言近年来,我国机械工业进入高速发展阶段,机械市场对重型机床、超重型机床要求明显提升。为了满足市场需求,就一定要提升超重型数控龙门移动加工中心效能,对其设计进行深入研究。同时提高超重型数控龙门移动加工中心加工能力,有利于提高我国工业实力和基础装配的制造实力,满足我国冶金业、电… [了解更多]

16

2018-10

数控龙门加工中心专项修理方案

1 设备简介XK2130 数控龙门镗加工中心,武汉重型机床厂生产,2007 年到货,2009 年9 月安装调试完成投入生产,工作节奏为两班制, 设备总体状况良好,目前在用,未进行过大修。2 设备现状说明目前设备的几何精度及位置精度超差,使精密工件及精加工工件不能满足图纸要求 [1… [了解更多]

15

2018-10

龙门五面加工中心数控精度恢复探索实施

1 背景介绍数控机床做为一种高精度、高效率、稳定性强的自动化加工设备,已经成为机械行业必不可少的现代化技术装置。数控机床的数控精度是影响其高精度性能的一个重要方面,因而也是数控机床确保加工过程中精度的一个重要项目。公司 08 年购买的 TKA57200X400 型数控龙门五面加工… [了解更多]

15

2018-10

HNC-21M系统用于镗铣加工中心再制造

福建浔兴拉链科技股份有限公司于 2006 年向武汉华中数控系统有限公司购买的 XK731 数控镗加工中心,采用华中Ⅰ型 HC- NC-IHA 数控系统控制。该系统是由华中数控系统有限公司研制开发的基于PC-NC 的经济型数控系统,其结构是在个人 PC 计算机(486 以上)安装控… [了解更多]

31

2018-07

加工中心精度调整检查表C04-022

加工中心精度调整检查表机床型号:机床编号:检查日期:检查项目测试方法与图表容许差mm测量值判定签字Z轴相对于XY轴垂直度用直角规测量X、Y轴最大差值Z轴相对于测量圆筒X轴倾斜度0.01/300mmZ轴相对于测量圆筒Y轴倾斜度0.01/300mmZ轴相对于工作台顶面平行度Z轴相对于… [了解更多]


产品中心

——